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aXi’an Jiaotong University, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an, China
bGuangdong Xi’an Jiaotong University Academy, Foshan, China
cTexas A&M University at Qatar, Science Program, Doha, Qatar

Abstract. Rabi oscillation, an interband oscillation, describes periodic motion between two states that belong
to different energy levels, in the presence of an oscillatory driving field. In photonics, Rabi oscillations can be
mimicked by applying a weak longitudinal periodic modulation to the refractive index. However, the Rabi
oscillations of nonlinear states have yet to be introduced. We report the Rabi oscillations of azimuthons—
spatially modulated vortex solitons—in weakly nonlinear waveguides with different symmetries. The period
of the Rabi oscillations can be determined by applying the coupled mode theory, which largely depends
on the modulation strength. Whether the Rabi oscillations between two states can be obtained or not is
determined by the spatial symmetry of the azimuthons and the modulating potential. Our results not only
deepen the understanding of the Rabi oscillation phenomena, but also provide a new avenue in the study
of pattern formation and spatial field manipulation in nonlinear optical systems.
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1 Introduction
Rabi oscillations were introduced in quantum mechanics,1 but
by now are widely investigated in a variety of optical and pho-
tonic systems that include fibers,2,3 multimode waveguides,4–6

coupled waveguides,7 waveguide arrays,8–10 and two-dimensional
modal structures.11,12 Recently, Rabi oscillations of topological
edge states13,14 and modes in the fractional Schrödinger equation15

were also reported. Rabi oscillations are interband oscillations
that require an AC field to be applied as an external periodic
potential. In optics, the longitudinal periodic modulation of
the refractive index plays the role of an AC field in temporal
quantum systems, and Rabi oscillations are indicated by the
resonant mode conversion. As far as we know, the investigation
of optical Rabi oscillations thus far has been limited to the linear
regime only, and the Rabi oscillation in nonlinear systems is
still an open problem that needs to be explored.

The aim of this work is to investigate Rabi oscillations of
azimuthons in weakly nonlinear waveguides that is accomplished

by applying a weak longitudinally modulated periodic potential.
Azimuthons are a special type of spatial soliton; they are azi-
muthally modulated vortex beams that exhibit steady rotation
upon propagation.16 Generally, azimuthons, especially the ones
with higher-order angular momentum structures, are unstable
in media with local Kerr or saturable nonlinearities. To over-
come the instability drawback, a nonlocal nonlinearity is intro-
duced, and recently published reports demonstrate that the stable
propagation of azimuthons can indeed be obtained.17–19 In addi-
tion, it was also reported that the spin-orbit-coupled Bose–
Einstein condensates can support stable azimuthons as well.20

However, the treatment of nonlocal nonlinearity and spin-orbit-
coupled Bose–Einstein condensates is challenging in both theo-
retical modeling and experimental demonstration. Nevertheless, it
has been confirmed that weakly nonlinear waveguides21 represent
an ideal platform for the investigation of stable azimuthons,22,23

even with higher-order modal structures.
Following this path of inquiry, we first investigate Rabi

oscillations of azimuthons in a circular waveguide and then in
a square waveguide. Since in this nonlinear three-dimensional
wave propagation problem no analytical solutions are known,*Address all correspondence to Yiqi Zhang, E-mail: zhangyiqi@mail.xjtu.edu.cn

Research Article

Advanced Photonics 046002-1 Jul∕Aug 2020 • Vol. 2(4)

https://doi.org/10.1117/1.AP.2.4.046002
https://doi.org/10.1117/1.AP.2.4.046002
https://doi.org/10.1117/1.AP.2.4.046002
https://doi.org/10.1117/1.AP.2.4.046002
https://doi.org/10.1117/1.AP.2.4.046002
https://doi.org/10.1117/1.AP.2.4.046002
mailto:zhangyiqi@mail.xjtu.edu.cn
mailto:zhangyiqi@mail.xjtu.edu.cn
mailto:zhangyiqi@mail.xjtu.edu.cn
mailto:zhangyiqi@mail.xjtu.edu.cn


the mode of inquiry will necessarily be predominantly numerical
with some theoretical background. In the circular waveguide,
the azimuthons will exhibit Rabi oscillation while rotating
during propagation. In the square waveguide, the behavior of
the azimuthons is different in two aspects:15 (i) azimuthons will
rotate only if the corresponding Hamiltonian (energy) is bigger
than a certain threshold value and (ii) azimuthons will be
deformed during propagation. Hence, in this work, we choose
azimuthons with large enough energies to avoid wobbling
motions in the square waveguide during propagation.

2 Results

2.1 Theoretical Analysis

The propagation of a light beam in a photonic waveguide can be
described by the following Schrödinger-like paraxial wave
equation:

i
∂
∂ZΨþ 1

2k0

� ∂2

∂X2
þ ∂2

∂Y2

�
Ψþ k0

n2
nb

jΨj2Ψ

þ k0
nðX; YÞ − nb

nb
½1þ μ cosðδZÞ�Ψ

¼ 0; (1)

where ΨðX; Y; ZÞ is the complex amplitude of the light beam,
the quantities ðX; YÞ and Z are the transverse and longitudinal
coordinates, and k0 ¼ 2πnb∕λ0 is the wavenumber in the
medium, where λ0 is the wavelength in the vacuum. Other quan-
tities in Eq. (1): μ ≪ 1 is the longitudinal modulation strength,
δ is the longitudinal modulation frequency, n2 is the nonlinear
Kerr coefficient, nðX; YÞ is the linear refractive index distribu-
tion, and nb is the ambient index. In Eq. (1), the refractive index
change includes two parts, which are jn − nbj (the linear part)
and n2jΨj2 (the nonlinear part). We would like to note that
weakly nonlinear waveguides demand not only the linear and
nonlinear refractive index changes to be small in comparison
with nb, but also the nonlinear part to be much smaller than
the linear part. According to the relations x ¼ X∕r0, y ¼ Y∕r0,
z ¼ Z∕ðk0r20Þ, d ¼ k0r20δ, and σ ¼ sgnðn2Þ, with r0 being
determined by the real beam width, Eq. (1) can be cast into
its dimensionless version:

i
∂
∂zψ þ 1

2

� ∂2

∂x2 þ
∂2

∂y2
�
ψ þ σjψ j2ψ þ V½1þ μ cosðdzÞ�ψ ¼ 0;

(2)

where ψ¼k0r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn2j∕nb

p
Ψ and Vðx;yÞ¼k20r

2
0½nðx;yÞ−nb�∕nb.

Here we will consider propagation in a deep circular potential
Vðx; yÞ ¼ V0 exp½−ðx2 þ y2Þ5∕w10�, where w characterizes the
potential width and V0 is the potential depth. Note that it is
possible to have a weak nonlinearity even when the potential
is deep. Thus the potential can be deep, but the potential modu-
lation can still be shallow. The parameter σ ¼ 1 ðσ ¼ −1Þ cor-
responds to the focusing (defocusing) nonlinearity. In this work,
we consider the focusing nonlinearity, i.e., we take σ ¼ 1.

Different materials are used to produce waveguides, and
silica is one of the most popular, with the typical parameters
nb ¼ 1.4, jn − nbj ≤ 9 × 10−3, and n2 ¼ 3 × 10−16 cm2∕W
for light beams with the wavelengths ranging from the visible

to the near-infrared. Without loss of generality, we choose
λ0 ¼ 800 nm in this work. Therefore, if we choose V0 ¼ 500,
the value of r0 ≈ 25.0 μm is obtained, according to the relation
adopted in Eq. (2). Indeed, such a value is reasonable for a
multimode fiber.24 According to the wavelength and r0, one
learns that the diffraction length is ∼7 mm. Considering that
the group velocity dispersion coefficient is ∼35 fs2∕mm at the
wavelength of λ0 ¼ 800 nm, the dispersion length is on the
order of kilometers for a picosecond light beam, which is
much longer than the propagation distance taken in this work.
As a result, it is safe to neglect temporal effects.

To start with, we consider the modes supported by the deep
potential alone; therefore, the nonlinear term and the longi-
tudinal modulation in Eq. (2) are initially neglected. The corre-
sponding solution of the reduced linear Eq. (2) can be written
as ψðx; y; zÞ ¼ uðx; yÞ expðiβzÞ, where uðx; yÞ is the stationary
profile of the mode and β is the propagation constant. Plugging
this solution into the reduced Eq. (2), one obtains

βu ¼ 1

2

� ∂2

∂x2 þ
∂2

∂y2
�
uþ Vu; (3)

which is the linear steady-state eigenvalue problem of Eq. (2)
when σ and μ are set to zero. Equation (3) can be solved by
utilizing the plane-wave expansion method, and the eigenstates
supported by the deep potential Vðx; yÞ can be easily obtained.
In Fig. 1, the first-order as well as higher-order basic modes,
degenerate dipole modes, degenerate quadrupole modes, degen-
erate hexapole modes, and degenerate octopole modes that can
exist in the potential are displayed. Here the term “degenerate”
means that all modes feature the same propagation constants, in
the usual optical meaning. These linear modes will be used as
the input modes of the more general nonlinear and modulated
modes of the complete Eq. (3).

Therefore, to seek approximate azimuthons in weakly non-
linear waveguides, one takes the degenerate modes and makes
a superposition of them as the initial wave

ψðx; yÞ ¼ A½u1ðx; yÞ þ iBu2ðx; yÞ� expðiβzÞ; (4)

where A is an amplitude factor, 1 − B is the azimuthal modu-
lation depth, and u1;2ðx; yÞ are the degenerate linear modes
(see examples in Fig. 1). Thus we set the transverse profile of
the azimuthon at the initial place as

Uðx; y; z ¼ 0Þ ¼ A½u1ðx; yÞ þ iBu2ðx; yÞ� (5)

and numerically propagate it to obtain an output mode at an ar-
bitrary z. We should note that the inputs depicted by Eq. (5) do
not rotate in a linear medium, since the modes are degenerate.
Rotation appears only when the nonlinearity is added to the
model.

In Fig. 2, we display such approximate azimuthons with
A ¼ 0.4 and B ¼ 0.5. One finds that the phase of azimuthons
is nontrivial, displaying angular momentum and topological
charge. For dipole azimuthons the topological charge is �1,
whereas for quadrupole, hexapole, and octopole azimuthons
the values are �2, �3, and �4, respectively. As expected, these
azimuthons will rotate with a constant angular frequency ω
during propagation when the nonlinear term in Eq. (2) is
included. Therefore, the wave Uðx; y; zÞ can be rewritten as
Uðr; θ − ωzÞ in polar coordinates, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and
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(a) (b) (c) (d) (e)

Fig. 1 (a) Basic modes, (b) degenerate dipole modes, (c) degenerate quadrupole modes,
(d) degenerate hexapole modes, and (e) degenerate octopole modes. First row: first-order modes,
second row: second-order modes, and third row: third-order modes. The panels are shown in
the window −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Other parameters: V 0 ¼ 500 and w ¼ 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Amplitude and phase of (a)–(d) the first-order and (e)–(h) the second-order azimuthons
constructed from (a) and (e) the degenerate dipoles, (b) and (f) the quadrupoles, (c) and
(g) the hexapoles, and (d) and (h) the octopoles. The panels are shown in the window
−2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Other parameters: A ¼ 0.4 and B ¼ 0.5.
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θ is the azimuthal angle in the transverse plane ðx; yÞ. This fact
allows for a bit of theoretical analysis.

After plugging Eq. (4) into Eq. (2) with μ ¼ 0, multiplying by
U� and ∂θU�, respectively, and integrating over the transverse
coordinates, one ends up with a linear system of equations:

−βPþ ωLz þ I þ N ¼ 0;

− βLz þ ωP0 þ I0 þ N0 ¼ 0; (6)

where P¼ RR jUj2dxdy, Lz ¼ −iRR ð−y∂xUþ x∂yUÞU�dxdy,
P0 ¼ RR j − y∂xU þ x∂yUj2dx dy, I ¼ RR

U�Δ⊥Udx dy, N ¼RR ðσjUj2 þ VÞjUj2dx dy, I0 ¼ i
RR ð−y∂xU� þ∂yU�ÞΔ⊥Udxdy,

and N0 ¼ i
RR ðσjUj2þVÞð−y∂xU�þx∂yU�ÞUdxdy. Obviously,

the quantities P and Lz stand for the power and angular momen-
tum of the beam, and P0 is the norm of the state ∂θU. The
integrals I and I0 are related to the diffraction mechanism of
the system, whereas N and N0 account for the waveguide and
nonlinearity. The angular frequency of the azimuthon during
propagation can be obtained by directly solving Eq. (6), that is

ω ¼ PðI0 þ N0Þ − LzðI þ NÞ
L2
z − PP0 : (7)

After these preliminaries, we are ready to address the Rabi
oscillation of azimuthons. To this end, we adopt the superposi-
tion of two azimuthons Um;nðx; yÞ expðiβm;nzÞ as an input

ψ ¼ cmðzÞUmðx;yÞexpðiβmzÞþ cnðzÞUnðx;yÞexpðiβnzÞ; (8)

where cm;nðzÞ are the slowly varying complex amplitudes of
the azimuthons and the modulation frequency is d ¼ βm − βn.
Plugging Eq. (8) into Eq. (2), and without considering the non-
linear term [but still on the level of analysis of Eq. (3)], one
obtains

i
∂cm
∂z Um expðidzÞ þ 1

2
μcmVUm½1þ expð2idzÞ�

þ i
∂cn
∂z Un þ

1

2
μcnVUn½expðidzÞ þ expð−idzÞ� ¼ 0: (9)

Since the azimuthons are constructed based on Eq. (5), they
satisfy the relation hUm;Uni ≠ 0 if m ¼ n and hUm;Uni ¼ 0 if
m ≠ n, thus forming a complete set of eigenstates. Here we
borrowed the bra-ket notation from quantum mechanics. Note
that the orthogonality of azimuthon shapes is only valid in the
weakly nonlinear regime. As a result, one obtains two coupled
equations based on Eq. (9):

i
∂cm
∂z þ 1

2
μ

D
UmVUn

E
D
UmUm

E cn ¼ 0;

i
∂cn
∂z þ 1

2
μ

D
UnVUm

E
D
UnUn

E cm ¼ 0; (10)

where hUmVUni ¼
RR

rU�
mVUn dr dθ, with the asterisk repre-

senting the conjugate operation. Based on Eq. (10), the period
of the Rabi oscillation can be obtained as

zR ¼ π

jΩRj
; (11)

where

ΩR ¼ μ

2

D
UmVUn

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
UmUm

ED
UnUn

Er : (12)

(a)

(b)

(c)

Fig. 3 Rabi transition of (a) a dipole and (b) a hexapole. In each
case, the propagation is shown by the isosurface plot above
which amplitude distributions at selected distances are shown.
In both cases, the weak longitudinally periodic modulation exists
in the region 30 ≤ z ≤ 90, with d ≈ 25.2 and μ ≈ 0.031 in (a) and
d ≈ 36.36 and μ ≈ 0.014 in (b). (c) The Rabi oscillation period zR

versus the frequency detuning l.
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We note that the azimuthon conversion happens at half of the
period, i.e., at zR∕2. Note also that the Rabi spatial frequency
directly depends on the modulation strength μ.

2.2 Circular Waveguide

We investigate the propagation of azimuthons in the circular
weakly nonlinear waveguide by including the longitudinal
modulation, and the results are displayed in Fig. 3. Without loss
of generality, we choose the dipole and hexapole azimuthons,
which are shown in Figs. 3(a) and 3(b), respectively. By taking
the dipole azimuthon as an example [Fig. 3(a)], we want to see
whether the Rabi oscillation between the dipole azimuthon
[Fig. 2(a)] and its corresponding second-order dipole azimuthon
[Fig. 2(e)] can be established. So, to induce resonance, we set
the modulation frequency to be the difference between the
eigenvalues of the two modes, which is d ≈ 25.2. As shown by
Eq. (12), the period of the Rabi oscillation is expected to depend
on the modulation strength μ, and here we set it to be μ ≈ 0.031
to make the period zR ∼ 60. As a consequence, one expects to
see the second-order dipole azimuthon at a distance ∼30 after
turning on the longitudinal modulation.

In Fig. 3(a), the propagation of the dipole azimuthon is
exhibited as a three-dimensional (3-D) isosurface plot, in which
the longitudinal modulation exists only in the interval
30 ≤ z ≤ 90. When the propagation distance is smaller than

z ≤ 30, one in fact observes the stable rotational propagation
of the dipole azimuthon. The selected amplitude distributions
at z ¼ 0 and z ¼ 30 are shown above the 3-D isosurface plots.
In the interval 30 ≤ z ≤ 90, which is about one period of the
Rabi oscillation, the oscillation between the dipole azimuthon
and the second-order azimuthon is displayed, in which the
dipole azimuthon completely switches to the second-order
azimuthon at z ¼ 60. Indeed, the corresponding amplitude dis-
tribution is the same as that in Fig. 2(e) except for rotation, and
the reason is quite obvious—azimuthons rotate steadily during
propagation. When the propagation distance reaches z ¼ 90, the
dipole azimuthon is recovered and the longitudinal modulation
is also lifted at the same time. Therefore, one observes a stable
rotating dipole azimuthon in the interval 90 ≤ z ≤ 120 and the
amplitude distributions at z ¼ 90 and z ¼ 120, which are dipole
azimuthons explicitly, and are shown above the isosurface plot.
The analogous propagation dynamics of the hexapole azimuthon
is shown in Fig. 3(b), the setup of which is the same as that of
Fig. 3(a); it also clearly displays the Rabi oscillation of a higher-
order azimuthon.

Here we would like to note that the Rabi oscillation is not
feasible between two arbitrary azimuthons. Only azimuthons
with similar structures (e.g., the dipole and the higher-order
dipole azimuthons) can switch between each other, and azimu-
thons with different symmetries (e.g., the dipole and the
quadrupole azimuthons) will not, because the overlap integrals

(a) (b)

(c) (d)

(e) (f)

Fig. 4 (a) Rabi transition of a deformed dipole. (b) The amplitude and phase of the azimuthon
based on the dipole in (a). (c) The transition of a deformed hexapole. (d) The amplitude and phase
of the azimuthon based on the hexapole in (c). (e) The transition of a deformed higher-order
dipole. (f) The amplitude and phase of the azimuthon based on the higher-order dipole in (e).
The panels are shown in the window −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Other parameters: A ¼ 0.4
and B ¼ 0.5.
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in general are zero, hUmVUni ¼ 0. Note also that the Rabi
oscillation between two modes with opposite symmetry is also
possible if the potential is antisymmetrically modulated in the
transverse plane.25

Generally, there must exist some frequency detuning
l ¼ d − d0 between the real modulation frequency d0 and the
resonant frequency d. Therefore, it is reasonable to have a look
at the efficiency of the azimuthon conversion versus the detun-
ing l. Unfortunately, one cannot obtain a direct measure of the
efficiency via the projection of the field amplitude ψ on the
targeting azimuthons due to the rotation of azimuthons during
propagation. However, the efficiency is reflected on the Rabi
oscillation period zR—the bigger the value of zR, the bigger
the efficiency.13–15 The dependence of zR on the frequency de-
tuning l is shown in Fig. 3(c). As expected, one finds that the

efficiency of azimuthon conversion is the biggest at the resonant
frequency, and it reduces with the growth of the frequency
detuning l.

2.3 Square Waveguide

Now we investigate the azimuthon transition in a square wave-
guide, which is generated by the potential in Eq. (2) in the form
Vðx; yÞ ¼ V0 exp½−ðx10 þ y10Þ∕w10�. Again, we solve for the
linear eigenmodes supported by the deep square waveguide
using the plane-wave expansion method. Connected with the
geometry of the potential, the amplitude distributions of the
linear modes are more complex than those in the regular circular
waveguide; therefore, we denote them as the deformed modes.
In Fig. 4, we display three kinds of deformed modes and the

(a)

(b)

Fig. 5 (a) Transition between dipole and hexapole azimuthons with d ≈ 25.2 and μ ≈ 0.085.
(b) Transition between dipole and hexapole azimuthons with d ≈ 22.1 and μ ≈ 0.034. The weak
longitudinally periodic modulation has to always exist during propagation.
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corresponding azimuthons, which will transform mutually be-
cause of the relation hUmVUni ≠ 0.

Different from the azimuthons in circular waveguides, the
azimuthons in square waveguides rotate conditionally. Due to
the symmetry of the square waveguide, a rotating azimuthon
will deform, i.e., its profile will change. Without considering
nonlinearity, the linear superposition of two degenerate
modes [e.g., dipoles in Fig. 4(a), labeled as u1;2ðx; yÞ] is also
a dipole solution in the square potential, as u01;2ðx;yÞ ¼
½u1ðx;yÞ�u2ðx;yÞ�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR ju1ðx;yÞ�u2ðx;yÞj2dxdy
q

. We found

that an azimuthon in a square waveguide will rotate when
the condition HðψÞ > Hðu01;2Þ is met. Here H represents the
Hamiltonian of the model.22 Even though the wobbling azi-
muthons can be established in our numerical simulations,
we are more interested in the rotating azimuthons, so we set
again A ¼ 0.4 and B ¼ 0.5 in this section to guarantee the
rotation of azimuthons during propagation.

Thus the azimuthons will be deformed during propagation
because of the symmetry of the potential, hence to exhibit
the azimuthon conversion in a more clear way one has to prop-
erly choose the value of μ to make the Rabi oscillation period
almost equal to one half of the target azimuthon rotation period,
since the modulation frequency d is determined beforehand.
Numerical simulations reveal that the rotation periods of the
hexapole azimuthon and the higher-order dipole azimuthon
are ∼148.4 and ∼146.4, respectively. Therefore, according to
Eq. (12), the modulation strength μ for the two cases should
be ∼0.085 and ∼0.034, respectively. The numerical demonstra-
tion of the Rabi oscillation is shown in Fig. 5. Different from
the setting for the case of a circular waveguide, the longitudinal
modulation always accompanies the square waveguide.

As shown in Fig. 5(a), the hexapole azimuthon is obtained at
z ∼ 37.1 (one half of the Rabi oscillation period and also a quar-
ter of the rotation period of the hexapole azimuthon), whereas
in Fig. 5(b) the higher-order dipole azimuthon is obtained at
z ∼ 36.6. When the propagation distance reaches one Rabi os-
cillation period, the dipole azimuthon is recovered with a small
deformation. To show the azimuthon conversion more transpar-
ently, we also display the corresponding phase distributions.
Evidently, there is only one phase singularity in the phase of
the dipole azimuthon (the topological charge is 1), five singu-
larities for the hexapole azimuthon (the topological charge is 3),
and nine for the higher-order dipole azimuthon (the topological
charge is again 1). As seen, the phase distributions are in accor-
dance with the expectations and with those displayed in Fig. 4.

3 Conclusion
We investigated and demonstrated Rabi oscillations of azimu-
thons in weakly nonlinear waveguides with weak longitudinally
periodic modulations. Based on the coupled mode theory,
we find the period of Rabi oscillation, which is affected by
the modulation strength and also by the spatial symmetry of
azimuthons. The analysis is feasible for both circular and square
waveguides and can be extended to the waveguides of other
symmetries.

Based on the model considered in this work, the switching
between a vortex-carrying azimuthon and a multipole that is
free-of-vortex will not happen. The reason is that the initial
azimuthon is composed of two degenerate modes u1;2 that will
switch into another two degenerate modes u3;4 during propaga-
tion. So the output is a composition of u3;4, which also carries

a vortex. However, if the potential is modulated transversely in
a proper manner, such a switch becomes possible once both the
longitudinal and transverse phase matching is satisfied.
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